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A B S T R A C T

The effect of cholesterol (CHOL) content on the permeability and fluidity of dipalmitoylphosphatidylcholine
(DPPC) liposome membrane was investigated. Liposomes encapsulating sulforhodamine B (SRB), a fluorescent
dye, were prepared by reverse phase evaporation technique (REV) at various DPPC:CHOL molar ratios (from
100:0 to 100:100). The release kinetics of SRB was studied during 48 h in buffer (pH 7.4) containing NaCl at
37 °C. The DPPC:CHOL formulations were also characterized for their size, polydispersity index and morphology.
Increasing CHOL concentration induced an increase in the mean liposomes size accompanying with a shape
transition from irregular to nanosized, regular and spherical vesicles. The release kinetics of SRB showed a
biphasic pattern; the release data was then analyzed using different mathematical models. On the overall, the
SRB release was governed by a non-Fickian diffusion during the first period (0–10 h) while it followed a Fickian
diffusion between 10 and 48 h. Changes in DPPC liposome membrane fluidity of various batches (CHOL% 0, 10,
20, 30 and 100) were monitored by using 5- and 16 doxyl stearic acids (DSA) as spin labels. CHOL induced a
decrease in the bilayer fluidity. Concisely, CHOL represents a critical component in modulating the release of
hydrophilic molecules from lipid vesicles.

1. Introduction

Efficient delivery of drugs to living cells is a major challenge (Yang
et al., 2016). Liposomes, spherical capsules composed of one or more
bilayers enclosing an aqueous core, are the most common and well-
investigated nanocarriers (Patil and Jadhav, 2015). They have been
exhaustively studied for targeted drug delivery (Sercombe et al., 2015)
and controlled release of drugs (Akbarzadeh et al., 2013). They re-
present simplified models of biological membranes mainly consisting of
binary or ternary mixtures of lipids (Bretscher, 1973; Eeman and Deleu,
2010). Several liposomal formulations such as Doxil®, Epaxal®, De-
poDur™, Ambisome®, etc., were marketed for several years (Bulbake
et al., 2017). Liposomes are mainly prepared from amphiphilic lipid
molecules such as phospholipids and sterols (Wu et al., 2015).

Dipalmitoylphosphatidylcholine (DPPC) is a major phospholipid in
mammalian membranes which shows a thermotropic transition of 41 °C
near the physiological temperature (Gmajner and Ulrih, 2011). Cho-
lesterol (CHOL) is also a key component of eukaryotic cell biological
membranes (Magarkar et al., 2014). Its effect on the structural and

dynamic properties of synthetic and natural membranes is well estab-
lished. CHOL modulates the rigidity (Gracià et al., 2010; Najafinobar
et al., 2016), thickness (Simons and Sampaio, 2011), stability (Miao
et al., 2015) and fluidity of membranes (Peetla et al., 2013; Redondo-
Morata et al., 2012; Takechi-Haraya et al., 2016). Moreover, CHOL
content in membranes affects drug encapsulation efficiency (Haeri
et al., 2014; Tabandeh and Mortazavi, 2013). It's worthwhile to note
that the ratio between CHOL and phospholipid used in liposomes for-
mulation to provide a controlled drug release is not well clarified
(Briuglia et al., 2015; Miao et al., 2015). Therefore, it would be valu-
able to define the best combination of lipids and CHOL that allows a
required controlled release of an encapsulated molecule (Fugit and
Anderson, 2014).

To our knowledge, this study is the first to investigate the effect of
cholesterol content on the permeability of DPPC bilayer for an en-
capsulated hydrophilic molecule, sulforhodamine B (SRB). Eleven bat-
ches of large unilamellar vesicles (LUVs) differing by DPPC:CHOL ratio
(100:0, 100:2.5, 100:5, 100:10, 100:15, 100:20, 100:25, 100:30,
100:50, 100:75 and 100:100) are prepared by reverse phase
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evaporation technique (REV). The different liposomal suspensions en-
capsulating a fluorescent dye, sulforhodamine SRB, are compared for
the leakage of the fluorophore through the lipid bilayer at 37 °C over
48 h. The effect of CHOL content on the apparent release constants was
analyzed by comparison of the SRB release kinetics data to several
mathematical models: zero-order, first-order, Higuchi, Korsmeyer-
Peppas, Hixson-Crowell, Weibull and Baker-Lonsdale models. Changes
in DPPC liposome membrane fluidity with the CHOL content (10, 20,
30 and 100%) were investigated by electron paramagnetic resonance
(EPR) spectroscopy using 5- and 16-doxyl stearic acid (DSA) as spins
labels. Moreover, the liposome preparations were analyzed for their
size, polydispersity index (PdI) and morphology by dynamic light
scattering (DLS) and transmission electron microscopy (TEM), respec-
tively. The results of this study could be used as a tool for assessing drug
permeability, understanding and predicting the in vitro release of hy-
drophilic solutes from different liposome formulations thus leading to a
better design of appropriate nanocarriers.

2. Materials and methods

2.1. Materials

Dipalmitoylphosphatidylcholine (DPPC) (purity≥ 99%) is pur-
chased from Lipoid Gmbh, Germany. CHOL (purity 99%), SRB (95%
content dye), gel sephadex G25 are all purchased from Sigma-Aldrich,
Germany. 5- and 16-DSA are purchased from Sigma-Aldrich (St. Louis,
MO, USA). Triton X-100 and Trizma Base are purchased from Sigma-
Aldrich, Switzerland. The organic solvents chloroform and methanol
are from Sigma-Aldrich, France and diethyl-ether is from VWR
Chemicals Prolabo, France.

2.2. Preparation of large unilamellar vesicles containing SRB

Large unilamellar vesicles (LUVs) were prepared by reverse phase
evaporation technique. of DPPC (25 μmol) was dissolved in 5ml of a
mixture of organic solvents: chloroform, diethyl-ether and methanol
(6:6:1, v:v:v) (Khreich et al., 2008). The liposomal suspension was so-
nicated (Sonicator starsonic 35) for 1min at 60 °C under nitrogen
stream to avoid lipid oxidation. 0.75ml of SRB solution (150mM)
prepared in 0.1M tris-HCl buffer (pH 7.4) was added to the mixture
followed by a sonication of the solution for 6min at 60 °C under ni-
trogen stream. The organic solvents were removed at 45 °C using a
rotary vacuum evaporator (Heidolph, Germany). A dark purple lipid
film was obtained and SRB solution (1.5 ml) was added followed by a
sonication for 5min at 60 °C under a nitrogen stream. SRB was added to
ensure its loading upon reconstitution of liposomes during evaporation
and/or sonication steps. The liposomal suspension was stored at 4 °C for
further manipulation.

The same protocol was used for the preparation of LUVs batches
containing cholesterol. A stock solution of cholesterol was prepared in
chloroform (25mg/ml) and aliquots were added to the DPPC mixture
before the first sonication at molar ratios DPPC: CHOL of 100:2.5,
100:5, 100:10, 100:15, 100:20, 100:25, 100:30, 100:50, 100:75 and
100:100. Three batches were prepared for each formulation.

2.3. Preparation of spin-labeled liposomes

Following the above-described protocol, the following formulations
were prepared at various DPPC:CHOL ratios (100:0, 100:10, 100:20,
100:30, 100:100) with the exception that the spin label (5- or 16-DSA)
was added to the liposomal suspensions at a DPPC:probe molar ratio of
100:1 before the first sonication. Three batches were prepared for each
spin-labeled DPPC:CHOL formulation.

2.4. Extrusion and purification of liposomes

The liposome suspensions (SRB- and spin-labeled liposomes) were
incubated in a 60 °C water bath for 35min and then extruded using an
“Avanti” mini-extruder (Avanti Polar Lipids, Switzerland) five times
through a 1 μm polycarbonate membrane followed by five times
through a 0.4 μm membrane. The extruded spin-labeled vesicles were
ultracentrifuged (Optima™ Ultracentrifuge, Beckman Coulter, USA) at
40,000 g for 1 h at 4 °C and the resulting pellets were then kept in a
desiccator overnight to remove the residual solvent before EPR analysis.
The extruded SRB-loaded liposomes were centrifuged at 15000 rpm for
1 h at 4 °C to eliminate the excess buffer and the obtained pellet was
suspended in tris-HCl (0.1M; pH 7.4) buffer containing NaCl (150mM).
The buffer is added to maintain the osmolarity of the medium and to
preserve the structure of the prepared liposomes. The resulting LUVs
encapsulating SRB were separated from unloaded molecules by mole-
cular sieve chromatography using sephadex G25 column. They were
stored at 4 °C until use for fluorescence measurements.

2.5. Liposome characterization

2.5.1. Morphological analysis
Liposomes were imaged by transmission electron microscopy (TEM)

using a CM120 microscope (Philips, Eindhoven, Netherlands). 10 μl of
the liposome suspension was placed on copper grids and negatively
stained by a sodium silicotungstate solution (1%) for 30 s. The excess of
solution was removed with a filter paper and the air-dried stained
samples were used for imaging.

2.5.2. Size analysis
The mean particle size of liposomes was determined by dynamic

light scattering (DLS) technique using a Malvern Zetasizer Nano-series
(Malvern Instruments Ltd, France). Dispersion Technology Software
(DTS) v.5.10 was used to calculate the width of the fitted Gaussian size
distribution which is displayed as the polydispersity index (PdI). The
dispersity values reflect the nanoparticle size distribution (Masarudin
et al., 2015) and ranged from 0 (monodispersed) to 1 (polydispersed)
(Zaske et al., 2013). Before each DLS scan, the sample was stabilized for
5min for the equilibration and the size measurements were performed
in triplicate with at least 10 runs at 25 °C. Data were expressed as the
mean ± standard deviation.

2.6. Fluorescence spectroscopy measurements

2.6.1. Preparation of liposome suspensions for fluorescence measurements
To obtain absorbance values of 1, the suspensions of SRB-loaded

liposomes were diluted in tris-HCl buffer (0.1 M; pH 7.4) containing
NaCl (150mM). Measurements were performed at 532 nm which was
determined to be the maximal absorbance wavelength for loaded-SRB.
The optical density measurements were determined using a spectro-
photometer (Nicolet evolution 300 Thermoelectron, England). The di-
luted batches were used for fluorescence measurements.

2.6.2. Permeability study
Permeability study was carried out at 37 °C by monitoring the re-

lease of SRB from liposomal suspensions over 48 h. The high con-
centration of encapsulated SRB in liposomes led to self-quenching fol-
lowed by an increase in the fluorescence signal due to the release of
SRB. Fluorescence measurements were performed using a spectro-
fluorometer (Thermo Spectronic, Aminco Bowman Series 2, USA). The
excitation and the emission wavelength were 535 nm and 590 nm re-
spectively. The release of SRB from LUVs is calculated according to the
formula:

= ×F F
F

Release SRB (%) – 100t

max

0

(1)
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where Ft is the fluorescence of the suspension at time t, F0 is the initial
fluorescence measured at time t0 and Fmax is the maximal fluorescence
achieved by the addition of buffer containing Triton X-100 (1%) that
leads to the total release of SRB from LUVs.

2.7. Kinetic modeling of SRB release profiles

The SRB release kinetics from the various DPPC:CHOL formulations
were subjected to mathematical models including zero-order, first-
order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Weibull and Baker-
Lonsdale models. The model with the highest correlation coefficient R2

was considered to be the best fit for the kinetic release (Boyapally et al.,
2010).

Zero-order model. The zero-order model describes the system
where the drug release rate is independent of its concentration
(Hadjiioannou et al., 1993; Kalam et al., 2007). It can be represented by
the equation:

Qt – Q0=K0t (2)

Where Qt is the percentage of released SRB at time t (eq (1)), Q0 is the
percentage of released SRB at time t0 and K0 (slope of zero-order
equation) is the zero-order release constant expressed in units of
time−1. Data obtained from in vitro SRB release was plotted versus
time.

First-order model. According to the first-order model (Gibaldi and
Feldman, 1967; Wagner, 1969), the release of the drug can be expressed
by the equation:

Log C= log C0 - Kt/2.303 (3)

Where C0 is the initial concentration of drug, k is the first-order rate
constant expressed in units of time−1 and t is the time. In our work, C
represents the percentage of remaining SRB in vesicles at time t and C0

is the total SRB released in the medium containing Triton X-100 (1%).
The data obtained were plotted as log percentage of SRB remaining
versus time. This yielded a straight line with a slope of -K/2.303.

Higuchi model. The Higuchi model is the first example of a
mathematical model aimed to describe drug release from a matrix
system (Higuchi, 1961). The model describes the release of drugs from
an insoluble matrix as a square root of a time-dependent process based
on Fickian diffusion. In our work, we used the simplified Higuchi model
expressed by the following equation:

Q=KH x t1/2 (Higuchi, 1963) (4)

Where KH (slope of Higuchi equation) is the Higuchi dissolution con-
stant. The data obtained were plotted as percentage of released SRB
versus square root of time.

Hixson-Crowell model. The Hixson-Crowell model describes the
release from systems where there is a change in surface area and dia-
meter of particles or tablets. The release is expressed by the equation:

Q0
1/3 – Qt

1/3= κhc x t (Hixson and Crowell, 1931) (5)

Where Qt is the remaining amount of the drug in particles at time t, Q0

is the initial amount of the drug and κhc, the obtained slope from the
Hixson-Crowell calibration curve, is the release constant. In our work,
Q0

1/3 is the cube root of 100% percentage of total SRB released in the
medium containing Triton X-100 and Qt

1/3 represents the cube root of
percentage of SRB remaining in liposomes at time t. This model was
applied to evaluate if the release rate of SRB could be controlled by
erosion, dissolution and degradation mechanisms. The data obtained
were plotted as (Q0

1/3 – Qt
1/3) versus time.

Baker-Lonsdale model. The Baker-Lonsdale (Baker and Lonsdale,
1974) described the drug release from a spherical matrix and expressed
by the following equation:

⎜ ⎟
⎡

⎣
⎢ − ⎛

⎝
− ⎞

⎠
⎤

⎦
⎥ =
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M
M

M
M

K3
2

1 1 t t
t

2/3

(6)

This equation is used to linearize the release data from several
formulations of microcapsules (Shukla and Price, 1991). The Taylor
development of Baker-Lonsdale equation is outlined in the Supporting
Information. Here, Mt/M∞ is the percentage of released SRB at time t
and K is the release rate constant obtained from the slope of Baker-
Lonsdale equation √k/2. Data obtained from the in vitro SRB release
from various batches of liposomes were plotted as [d (Mt/M∞)]/dt with
respect to the root of time inverse (Bhanja and Pal, 1989; Seki et al.,
1990).

Weibull model. The Weibull model (Weibull, 1951) is used for drug
dissolution or release from pharmaceutical dosage forms and expressed
by the empirical equation: m=1- e – (t – T/a) b. In our work, m is the
percentage of released SRB at time t, T accounts for the lag time before
the onset of the dissolution or release process and in most cases will be
zero, “a” denotes a scale parameter and is estimated from the calibra-
tion curve at time t= 1 (Kalam et al., 2007) while b is the shape
parameter and obtained from the slope of the curve and characterizes
the curve as exponential (b= 1), sigmoid (b > 1) or parabolic
(b < 1). This empirical equation described above is rearranged as
follows: m=1- e– (t/a) b and its logarithmic form can be expressed by
the equation:

log [-ln (1-m)]= b log t – log a (7)

According to Weibull model, the dependency between the shape
parameter b and the release mechanism has been established by several
authors (Costa and Sousa Lobo, 2001). Fickian diffusion was estimated
with b≤ 0.75, Fickian diffusion is combined with case II transport
(matrix relaxation) with 0.75 < b < 1 and a complex release me-
chanism of the drug is estimated with b=1 (Papadopoulou et al.,
2006). The data obtained were plotted as log [-ln (1-m)] versus the log
time.

Korsmeyer-Peppas model. The applicability of this model is re-
stricted to the first 60% of drug release and expressed by the following
equation:

Mt/M∞=Ktn (8)

Its logarithmic form could be written as log (Mt/M∞) = log K + n
log t.

Here, Mt/M∞ corresponds to the first 60% of SRB released at time t,
k is the release constant and n is release exponent. Data obtained were
plotted as the log of 60% of released SRB with respect to the log time.
The diffusional exponent n is obtained from the slope of Korsmeyer-
Peppas equation and is indicative of the mechanism of release of SRB
and is dependent on the geometry of the release device. The release
exponent n≤ 0.43 indicates a diffusion-controlled drug release so-
called Fickian diffusion; 0.43 < n < 1 indicates a non-Fickian diffu-
sion so-called anomalous transport in which the drug release is con-
trolled by diffusion and erosion mechanisms; n=1 indicates a zero-
order release when the drug release is independent of time (Jafari and
Kaffashi, 2016).

2.8. EPR spectroscopy measurements

2.8.1. Fluidity study
EPR spectra were carried out at various temperatures (293, 303, 313

and 323 K) on a Bruker 500E spectrometer at the X-band (9.4 GHz),
equipped with Bruker N2-temperature controller. The sample was in-
troduced into a standard quartz EPR tube of 21 cm in length with an
inner diameter of 3mm and placed in EPR cavity for 2min before the
data acquisition to ensure thermal equilibration. EPR spectra were re-
corded using the following parameters: microwave power, 0.6–6.4 mW;
modulation amplitude, 1 G; scan time, ∼5min; spectral resolution,
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2048 points; frequency modulation, 100 KHz.
The EPR spectrum of 5-DSA (Fig. 1A) exhibits anisotropic-low mo-

tion of the spin label. The fluidity of the membrane can be estimated
from the outermost separation between the spectral extrema, the
maximum hyperfine splitting (2Amax). The value of 2Amax reflects the
motional profiles near the phospholipid polar head group of the lipid
bilayer (Subongkot and Ngawhirunpat, 2015).

From 16-DSA spectrum (isotropic-fast motion) (Fig. 1B), the rota-
tional correlation time (τc) is the liposomal fluidity parameter used to
determine the motional profiles at the phospholipid acyl chain near the
lipophilic region of the phospholipid bilayer (Subongkot and
Ngawhirunpat, 2015). τc is calculated according to the formula (Keith
et al., 1970):

τc = (6.5× 10−10)W0[(h0/h-1)0.5 -1] (9)

Where W0 is the width of the central peak in Gauss (G), h0 and h-1 are
the amplitude of the central and high field peaks respectively. The
2Amax and τc increased with a decrease in fluidity (Sarrasague et al.,
2012). EPR measurements were performed in triplicate for each la-
beled-DPPC:CHOL formulation.

2.9. Statistics

To assess significant differences between values, statistical analysis
was carried out using the Student's t-test and the one-way analysis of
variance (ANOVA). A value of P < .05 was considered statistically
significant.

3. Results and discussion

3.1. Microscopy imaging of liposomes

TEM images showed a shape transition from irregular to nanosized
unilamellar spherical vesicles following CHOL addition. Our findings
are in agreement with a previous study proving that DPPC liposomes
are subjected to shape fluctuation induced by CHOL addition (Brocca
et al., 2004). The non-spherical shape was obtained for DPPC:CHOL
formulations: 100:0 (Fig. 2A) and 100:2.5 (Fig. 2B). According to lit-
erature, the poor packing of lipid chains induces membrane defects
(Raffy and Teissié, 1999) which in turn could be a reason for the irre-
gular vesicle shape.

Beyond 2.5 mol% CHOL, liposomes were spherical, regular and
homogenous in shape (Fig. 2C, D, E, F, G, H and I). According to lit-
erature, increasing CHOL content enhanced membrane stability
(Nogueira et al., 2015) and this is associated with a decrease in mem-
brane deformability due to an increase in lipid packing density
(CHOL>5%) (Choi et al., 2014).

3.2. Size and polydispersity index

The effect of CHOL addition on the mean size of DPPC liposomes

and PdI values was investigated by DLS and results were outlined in
Table 1.

Table 1 showed a gradual increase in the mean size of DPPC vesicles
from 220 to 472 nm following CHOL addition (< 30mol%). However,
further CHOL addition (50 and 100%) had a limited effect on the mean
vesicles size and the values were about 400 nm. Insertion of CHOL in-
side the membrane leads to the formation of CHOL-poor and CHOL-rich
domains that could coalesce into larger vesicles (López-Pinto et al.,
2005; Tseng et al., 2007). The formation of raft domains at high CHOL
content (50 and 100% CHOL) (Javanainen et al., 2017; Waheed et al.,
2012) may result in no additional increase of the vesicle size. This latter
can be also due to the fact that all formulations underwent extrusion
through polycarbonate membrane of 0.4 μm. The liposome prepara-
tions were also characterized for their homogeneity and the obtained
PdI values were in the range 0.40–0.42 (Table 1) suggesting a mono-
dispersed population of liposomes.

3.3. Release kinetics of SRB from liposomes

Most of the membrane permeability studies have been carried out
using LUVs (Faure et al., 2006). They are prepared by reverse phase
evaporation technique and their aqueous cavity allows a high en-
capsulation of hydrophilic fluorescent dyes (Ding et al., 2005; Khreich
et al., 2008). SRB and calcein are mostly used as fluorescent probes to
monitor liposomes permeability (Chen et al., 2012; Ding et al., 2005).
In this work, permeability study of DPPC liposomes that differ by their
cholesterol content was investigated by monitoring the release kinetics
of SRB at 37 °C over 48 h.

Fig. 3 represents the release kinetics of SRB from various
DPPC:CHOL batches. All the formulations containing CHOL% equal or
below 30%, and DPPC:CHOL 100:75 showed a biphasic pattern, while a
monophasic pattern was obtained for formulations loaded with
DPPC:CHOL 100:50 and 100:100. The monophasic pattern was main-
tained during 28 days of incubation at 37 °C for the formulation
DPPC:CHOL 100:100 (data not shown) allowing total release of SRB.

CHOL-free DPPC liposomes showed a release of SRB from the first
hour of incubation and the percentage of released SRB was
6.84 ± 0.09%. Compared to this batch, liposomes incorporating 2.5%
and 10% of CHOL showed also a release of SRB and the percentage of
SRB release after 1 h was 7.9 ± 1.1% and 6.1 ± 0.65% respectively.
After the same time, the percentage of released SRB did not exceed 5%
for the other DPPC:CHOL formulations. After 4 h of incubation, the
release of SRB was fast for the formulations 100:0 and 100:2.5 where
the percentage of released SRB reached 26%. However, this percentage
was 16.41 ± 1.01% for the batch prepared at a molar ratio
DPPC:CHOL of 100:10 and lower than 10% for the other formulations.

After 10 h of incubation, the percentage of released SRB was above
45% for DPPC:CHOL formulations of 100:0, 100:2.5 and 100:10.
However, it was of 17 and 14% for the batches 100:20 and 100:30
respectively and below 10% for the formulations 100:50 and 100:100.
Chen et al. (2012) reported that about 43% of calcein release from

Fig. 1. EPR spectra of 5-DSA (A) and 16-DSA (B) labeled-DPPC li-
posomes.
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DPPC liposomes at 37 °C was obtained after 10 h of incubation (Chen
et al., 2012). Similar results were obtained in our experiments since
45% of SRB were released after 10 h from CHOL-free DPPC liposomes.

After 48 h of incubation, the percentage of released SRB was higher
than 80% for the formulations of 100:0 and 100:2.5, equals to 63, 53,
21%, for the formulations of 100:10, 100:20 and 100:30, and lower
than 20% for the formulations of 100:50 and 100:100.

For formulations presenting a biphasic pattern of SRB release, the
initial fast release could be due to SRB molecules adsorbed on the li-
posome surface, it is followed by a landing (between 10 and 24 h), then
a re-increase of the SRB release. The second release phase may be at-
tributed to the diffusion of SRB from the inner aqueous compartment to
the extravesicular medium. It seems that a landing period is required to
allow a hydrophilic compound to cross the membrane.

McConnell and Radhakrishnan proposed that when cholesterol is
added to the phospholipid membrane, the complex cholesterol-phos-
pholipid is formed and the area of the membrane decreases until an
equivalence point of 33 mol% of cholesterol is reached (McConnell and
Radhakrishnan, 2003). Beyond 33mol% of cholesterol, a little addi-
tional change was reported. Our results proved that the release of SRB
was drastically decreased with the increase of the cholesterol content in
DPPC:CHOL formulations up to 30%. Several works reported that an
increase in cholesterol content in DPPC:CHOL systems produced a de-
crease in cross-sectional area per molecule (Mills et al., 2008; Ohvo-
Rekila, 2002; Saito and Shinoda, 2011). This is translated by the
“condensing effect” or “ordering effect” of cholesterol leading to a more
rigid structure of the membrane (Cournia et al., 2007; Decker et al.,
2012; Simons and Vaz, 2004).

The mechanical rigidity of liposomes induced by the condensing
effect of cholesterol and defined as the bending stiffness (Takechi-
Haraya et al., 2016) has been demonstrated using several methods. It

Fig. 2. TEM images of DPPC liposomes differing by their CHOL
content: 0% (A), 2.5% (B), 5% (C), 10% (D), 20% (E), 25% (F), 30%
(G), 50% (H) and 100% (I).

Table 1
Mean size values and polydispersity index for various DPPC:CHOL formulations.

DPPC CHOL Size (nm) PdI

100 0 220 ± 3.72 0.42 ± 0.31
100 2.5 221 ± 3.25 0.41 ± 0.07
100 5 278 ± 3.56 0.42 ± 0.30
100 10 300 ± 2.39 0.40 ± 0.09
100 20 308 ± 1.80 0.40 ± 0.07
100 25 467 ± 1.56 0.40 ± 0.04
100 30 472 ± 0.54 0.41 ± 0.39
100 50 400 ± 0.59 0.40 ± 0.07
100 100 402 ± 0.26 0.40 ± 0.10

Values are expressed as the means of three repetitions ± SD.

Fig. 3. The (Ft-F0)/Fmax ×100 variation with time at 37 °C for DPPC:CHOL liposomes.
Values are expressed as the mean of three independent release kinetics ± SD.
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was demonstrated that the bending stiffness increased as a function of
cholesterol for saturated phosphatidylcholine chains (Arriaga et al.,
2009; Decker et al., 2012). Consequently, the increase of membrane
rigidity induced by cholesterol seems to be accompanied with the de-
crease of lipid bilayer permeability.

According to literature, the DPPC lipid bilayer exists in a solid-or-
dered form described as the gel phase So at low temperature (below
30 °C). DPPC bilayers undergo a gel-liquid crystal transition at 41.2 °C
(Tm) where the lipid chains melt into a disordered-liquid structure Ld
(Schubert et al., 2011; Tristram-Nagle and Nagle, 2004). Cholesterol
affects the bilayer phase behavior (Feigenson, 2009; McMullen et al.,
2004) and is considered as a key regulator of the membrane fluidity
(Bagatolli and Sunil Kumar, 2009; Redondo-Morata et al., 2012; Xiang
and Anderson, 1998). During the transition (S0 to Ld phase), CHOL
addition (< 30mol%) leads to a gradual decrease in fluidity (Fraňová,
2010; Zhang et al., 2015), and this is accompanied by a decrease of SRB
release for formulations (5 < CHOL%<30). Also, at low CHOL con-
tent (2.5%), the SRB release kinetics were similar as that of the control.
At this fraction, CHOL didn't affect the bilayer permeability which is
also accompanied with the lower effect of CHOL on the lipid transition
temperature (Waheed et al., 2012).

Above 30mol% of cholesterol and at temperature ranging between
283 and 323 K, the lipid chains are tightly packed (Ohvo-Rekila, 2002),
the membrane lipids adopted a liquid-ordered Lo phase (Aguilar et al.,
2012; Saito and Shinoda, 2011) and cholesterol molecules arranged
themselves in linear clusters (Zhang et al., 2015). Also, above CHOL
30%, minor changes of the liposome size, the bilayer thickness, and the
average area per lipid molecule (Casciola et al., 2014; de Meyer and
Smit, 2009) were observed and accompanied by a little variation of SRB
release.

3.4. Mathematical modeling

To determine the effect of cholesterol on the constant release ki-
netics, quantitative analysis is done using the SRB release data. Several
works applied mathematical models to evaluate the drug release me-
chanism from encapsulation systems (Shoaib et al., 2010). Mathema-
tical modeling can serve to optimize the design of therapeutic device
based on the drug release kinetics results (Ait-Oudhia et al., 2014;
Briuglia et al., 2015; Fugit and Anderson, 2014). Zero-order, first-order,
Higuchi, Korsmeyer-Peppas, Hixson-Crowell, Weibull and Baker-Lons-
dale models are the commonly used models describing the mechanism
of drug release (Barzegar-Jalali et al., 2008; Costa and Sousa Lobo,
2001; Javadzadeh et al., 2010). The model that best fitted the release
data was evaluated by the highest correlation coefficient R2 (Costa and
Sousa Lobo, 2001; Kadivar et al., 2015). The SRB release data were
analyzed by the various mathematical models; the release constants
values (K1 and K2) were determined for two period ranges (from 0 to
10 h and from 10 to 48 h, respectively). K1 and K2 values were sum-
marized in Tables 2 and 3 respectively. A representative graph of each
CHOL molar ratio with Korsmeyer-Peppas model (first and second re-
lease phases) is presented in the Supporting Information (Fig. s1).

Whatever the mathematical model used, the SRB release constants
showed a decrease with the increase of CHOL content in the liposomal
membrane. K1 values decreased from 5.05 to 0.60 (zero order model),
from 0.070 to 0.006 (first order model), from 16.87 to 2.24 (Higuchi
model), from 0.97 to 0.73 (Weibull model), 0.09 to 0.009 (Hixson-
Crowell model) and from 0.04 to 0.03 (Baker-Lonsdale model). Also for
K2 values, the variation was from 0.88 to 0.22 (zero order model), from
0.029 to 0.002 (first order model), from 8.80 to 2.14 (Higuchi model),
from 0.95 to 0.54 (Weibull model), from 0.03 to 0.003 (Hixson-Crowell
model), and from 0.04 to 0.03 (Baker-Lonsdale model).

In the first phase (0–10 h), data kinetics were fitted into the Weibull
model. Results suggest a non-Fickian diffusion for formulations (CHOL

% 0, 2.5, 10, 15 and 50) as the “b” parameter values were between 0.75
and 1 (Table 2). Also, the “b” parameter of the formulations CHOL% of
30 and 100 were close to 0.75. This was in accordance with the results
obtained by Korsmeyer-Peppas model as the “n” values were between
0.43 and 1 for the most formulations (Table 2).

For the second phase (from 10 to 48 h), the SRB release data sug-
gested a Fickian diffusion mechanism for formulations (CHOL% 10, 30,
50, 75 and 100) as the “b” parameter values determined by Weibull
model were below 0.75, which is concomitant with the obtained n
values (< 0.43) from Korsmeyer-Peppas model (Table 3). Non-Fickian
diffusion in the second phase was suggested for formulations CHOL% 0
and 2.5, and was confirmed by Korsmeyer-Peppas model while a zero
order release mechanism seems to govern the SRB release from for-
mulations CHOL% 5 and 15. Consequently, the period of incubation
should be taken into consideration in release kinetics studies through
lipid membranes.

3.5. Electron paramagnetic resonance study

EPR spectroscopy technique is used to monitor the molecular dy-
namics, mobility and conformational changes of the lipid bilayers
(Sarrasague et al., 2012). In this work, changes in DPPC membrane
fluidity following CHOL addition are monitored using 5- and 16-DSA as
spin labels at the 5th and 16th carbon atom positions of the phospho-
lipid acyl chain, respectively. The outer hyperfine splitting (2Amax)
(Fig. 4A) and rotational correlation time (τc) (Fig. 4B) were the EPR
parameters obtained from 5-DSA and 16-DSA spectra, respectively at
various temperatures (293, 303, 313 and 323 K).

Free-CHOL liposomes showed a decrease in the EPR parameters
with temperature where the 2Amax values decreased from
63.19 ± 0.37 to 57.41 ± 0.47 G and τc values decreased from
2.27 ± 0.37 to 1.26 ± 0.13 ns when temperature varied from 293 to
323 K. It is well-documented that DPPC vesicles undergo a transition
from gel to liquid-crystalline state at the main transition temperature
(Tm∼314 K) (Altunayar et al., 2015; Redondo-Morata et al., 2012) and
a fluid phase appears above Tm. Since the maximum hyperfine splitting
and rotational correlation time are inversely related to the fluidity
(Coderch et al., 2000), a decrease in the 2Amax and τc parameters are
observed for all DPPC:CHOL formulations with the raise of temperature
which is in agreement with other studies. Compared to CHOL-free DPPC
liposomes, and based on 2Amax values, the membrane fluidity in-
creased (P < .05) for formulations 10 and 30% CHOL at 293 K; 20%
CHOL at 303 K; 10% CHOL at 313 K and 20% CHOL at 323 K while it
decreased (P < .05) for formulations with 20% CHOL at 313 K, 30%
CHOL at 313 and 323 k and 100% CHOL at all the studied tempera-
tures. This means that cholesterol, at low or intermediate percentage,
increased the fluidity of the upper region of the membrane while it
decreased it at high cholesterol content.

Also, compared to CHOL-free DPPC liposomes, the lipid membrane
fluidity estimated by τc parameter at the hydrophobic end showed a
decrease for formulations of 20, 30 and 100% CHOL at 293 K; 30 and
100% CHOL at 303 k; 10, 20, 30 and 100% CHOL at 313 and 323 K. The
fluidity of deeper region of the membrane seems to be more affected by
the cholesterol presence whatever was the CHOL content mainly above
313 K. Compared to CHOL-free DPPC membrane, the molecular dy-
namics near the hydrophobic region were not affected in formulations
with 10% CHOL at 293 and 303 K.

On the overall, the membrane fluidity was not affected by low CHOL
content (10%) in the hydrophobic core (16-DSA spectrum) while it was
decreased near phospholipid head groups and inside the deep hydro-
phobic region at intermediate (20 and 30%) and high (100%) CHOL
content and this is in agreement with other studies (Nagimo et al.,
1991; Zhao et al., 2007). CHOL is located inside the lipid bilayer and
not only near the polar head groups of phospholipids above CHOL 10%.

S. Kaddah et al. Food and Chemical Toxicology 113 (2018) 40–48

45



The emergence of the raft-like domains in membranes (Javanainen
et al., 2017; Toppozini et al., 2014) at intermediate and high CHOL
content may explain the decrease in membrane fluidity and conse-
quently the permeability for SRB.

4. Conclusion

To sum up, in this work we focused on the understanding and
modeling the bilayer permeability and fluidity of DPPC liposomes
containing various CHOL percentages. Regular shapes of liposomes
with a CHOL content higher than (2.5%) were obtained, and this was
associated with a decrease in membrane deformability and a gradual
decrease in the release of SRB. The SRB release data exhibited a

biphasic pattern for all formulations except those of CHOL% 50 and
100. A non-Fickian diffusion mechanism governs the SRB release in the
first release phase for all formulations, and in the second phase for
formulations CHOL% 0 and 2.5. However, a Fickian diffusion me-
chanism controls the SRB release after 10 h of incubation for formula-
tions containing a percentage of CHOL above 5. The results of this study
could be considered in lipid membrane permeability studies as well as
in the development of delivery systems based on liposomes.
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Table 2
Release rate constants of SRB (in the first phase, K1) and correlation coefficient values obtained for different DPPC:CHOL formulations using various mathematical models.

Liposome formulation
DPPC:CHOL

Zero-order
K ± SD
R2 ± SD

First-order
K ± SD
R2 ± SD

Higuchi
K ± SD
R2 ± SD

Korsmeyer-Peppas
n ± SD
R2 ± SD

Weibull
b ± SD
R2 ± SD

Hixson-Crowell
K ± SD
R2 ± SD

Baker-Lonsdale
K ± SD
R2 ± SD

100:0 5.05 ± 0.00 0.070 ± 0.01 16.87 ± 0.00 0.87 ± 0.01 0.97 ± 0.00 0.97 ± 0.00 0.04 ± 0.00
0.9874 ± 0.02 0.9937 ± 0.02 0.9632 ± 0.01 0.9944 ± 0.00 0.9940 ± 0.00 0.9972 ± 0.00 0.4069 ± 0.04

100:2.5 5.16 ± 0.00 0.072 ± 0.03 17.41 ± 0.00 0.81 ± 0.00 0.91 ± 0.00 0.10 ± 0.00 0.07 ± 0.01
0.9779 ± 0.00 0.9941 ± 0.00 0.9726 ± 0.01 0.9847 ± 0.02 0.9728 ± 0.01 0.9910 ± 0.01 0.3467 ± 0.00

100:5 3.63 ± 0.01 0.043 ± 0.01 11.35 ± 0.00 1.23 ± 0.00 1.30 ± 0.00 0.06 ± 0.00 0.05 ± 0.00
0.9603 ± 0.01 0.9340 ± 0.05 0.8147 ± 0.01 0.9768 ± 0.00 0.9728 ± 0.01 0.9437 ± 0.01 0.6102 ± 0.03

100:10 4.24 ± 0.01 0.053 ± 0.00 13.54 ± 0.01 0.78 ± 0.02 0.85 ± 0.00 0.07 ± 0.00 0.03 ± 0.00
0.9893 ± 0.02 0.9710 ± 0.00 0.9148 ± 0.02 0.9821 ± 0.05 0.9723 ± 0.00 0.9791 ± 0.01 0.2254 ± 0.01

100:15 1.98 ± 0.02 0.021 ± 0.00 6.61 ± 0.0.03 1.19 ± 0.00 1.20 ± 0.04 0.032 ± 0.00 0.01 ± 0.00
0.9428 ± 0.01 0.9517 ± 0.03 0.9451 ± 0.00 0.9201 ± 0.03 0.9247 ± 0.00 0.9489 ± 0.00 0.1635 ± 0.00

100:20 1.31 ± 0.00 0.014 ± 0.00 4.03 ± 0.00 0.76 ± 0.00 0.74 ± 0.00 0.021 ± 0.00 0.01 ± 0.00
0.7979 ± 0.03 0.7786 ± 0.02 0.6623 ± 0.01 0.8756 ± 0.00 0.8673 ± 0.00 0.7851 ± 0.00 0.1004 ± 0.00

100:25 2.30 ± 0.00 0.025 ± 0.00 7.96 ± 0.00 0.56 ± 0.00 0.55 ± 0.00 0.037 ± 0.00 0.32 ± 0.00
0.9101 ± 0.01 0.9255 ± 0.02 0.9434 ± 0.00 0.8693 ± 0.01 0.8772 ± 0.00 0.9207 ± 0.00 0.4636 ± 0.00

100:30 1.41 ± 0.03 0.013 ± 0.00 5.20 ± 0.00 0.77 ± 0.00 0.72 ± 0.03 0.024 ± 0.00 0.23 ± 0.01
0.8835 ± 0.01 0.8949 ± 0.01 0.9659 ± 0.02 0.9306 ± 0.01 0.9346 ± 0.00 0.8913 ± 0.00 0.6832 ± 0.00

100:50 0.56 ± 0.00 0.005 ± 0.00 1.70 ± 0.00 0.96 ± 0.00 0.99 ± 0.00 0.008 ± 0.00 0.33 ± 0.00
0.8680 ± 0.01 0.8631 ± 0.01 0.7195 ± 0.00 0.9066 ± 0.01 0.9053 ± 0.01 0.8649 ± 0.01 0.1005 ± 0.04

100:75 0.95 ± 0.00 0.010 ± 0.00 3.57 ± 0.00 0.44 ± 0.01 0.45 ± 0.03 0.015 ± 0.00 0.20 ± 0.01
0.8103 ± 0.01 0.9371 ± 0.02 0.9547 ± 0.00 0.9347 ± 0.02 0.9364 ± 0.00 0.8186 ± 0.00 0.6228 ± 0.00

100:100 0.60 ± 0.01 0.006 ± 0.00 2.24 ± 0.00 0.79 ± 0.00 0.73 ± 0.00 0.009 ± 0.00 0.03 ± 0.00
0.8566 ± 0.00 0.8604 ± 0.00 0.8624 ± 0.01 0.9244 ± 0.01 0.9253 ± 0.01 0.8592 ± 0.01 0.2536 ± 0.01

Table 3
Release rate constants of SRB (in the second phase, K2) and correlation coefficient values obtained for different DPPC:CHOL formulations using various mathematical models.

Liposome formulation
DPPC:CHOL

Zero-order
K±SD
R2± SD

First-order
K± SD
R2±SD

Higuchi
K± SD
R2± SD

Korsmeyer-Peppas
n±SD
R2± SD

Weibull
b± SD
R2± SD

Hixson-Crowell
K± SD
R2± SD

Baker-Lonsdale
K± SD
R2± SD

100:0 0.88 ± 0.01 0.029 ± 0.00 8.80 ± 0.00 0.31 ± 0.00 0.95 ± 0.00 0.031 ± 0.00 0.023 ± 0.00
0.9430 ± 0.03 0.9358 ± 0.00 0.9293 ± 0.01 0.9136 ± 0.00 0.9496 ± 0.00 0.9411 ± 0.01 0.0105 ± 0.03

100:2.5 0.92 ± 0.01 0.032 ± 0.00 9.15 ± 0.00 0.31 ± 0.01 1.05 ± 0.01 0.033 ± 0.00 0.05 ± 0.00
0.9478 ± 0.02 0.9342 ± 0.00 0.9224 ± 0.01 1.00 ± 0.00 0.9727 ± 0.04 0.9430 ± 0.00 0.036 ± 0.01

100:5 1.09 ± 0.01 0.027 ± 0.00 10.88 ± 0.03 0.26 ± 0.00 1.14 ± 0.00 0.031 ± 0.00 0.25 ± 0.00
0.9355 ± 0.05 0.9388 ± 0.00 0.9248 ± 0.04 1.00 ± 0.00 0.9294 ± 0.00 0.9404 ± 0.01 0.3173 ± 0.01

100:10 0.45 ± 0.00 0.010 ± 0.00 4.62 ± 0.00 0.20 ± 0.00 0.34 ± 0.00 0.012 ± 0.00 0.23 ± 0.00
0.9632 ± 0.02 0.9824 ± 0.01 0.9932 ± 0.03 0.9970 ± 0.01 0.9908 ± 0.01 0.9769 ± 0.00 0.5399 ± 0.01

100:15 1.18 ± 0.00 0.020 ± 0.00 11.62 ± 0.00 0.68 ± 0.02 1.52 ± 0.00 0.026 ± 0.00 0.22 ± 0.00
0.9731 ± 0.01 0.9432 ± 0.00 0.9259 ± 0.00 0.9282 ± 0.01 0.9869 ± 0.01 0.9556 ± 0.00 0.4273 ± 0.01

100:20 1.00 ± 0.00 0.016 ± 0.00 9.96 ± 0.01 0.74 ± 0.01 1.25 ± 0.03 0.021 ± 0.00 0.28 ± 0.00
0.9740 ± 0.04 0.9707 ± 0.05 0.9530 ± 0.00 0.9620 ± 0.03 0.9641 ± 0.05 0.9738 ± 0.00 0.4691 ± 0.03

100:25 0.52 ± 0.01 0.009 ± 0.02 5.26 ± 0.01 0.32 ± 0.00 0.80 ± 0.01 0.012 ± 0.00 0.30 ± 0.01
0.8955 ± 0.01 0.8672 ± 0.02 0.8075 ± 0.02 0.7738 ± 0.01 0.9375 ± 0.00 0.8767 ± 0.01 0.4032 ± 0.00

100:30 0.17 ± 0.00 0.003 ± 0.00 1.65 ± 0.01 0.22 ± 0.01 0.40 ± 0.00 0.003 ± 0.00 0.32 ± 0.00
0.9739 ± 0.02 0.9734 ± 0.00 0.9421 ± 0.03 0.9504 ± 0.00 0.9881 ± 0.01 0.9737 ± 0.01 0.3470 ± 0.01

100:50 0.30 ± 0.02 0.003 ± 0.00 1.70 ± 0.01 0.68 ± 0.01 0.50 ± 0.02 0.005 ± 0.00 0.40 ± 0.00
0.8299 ± 0.01 0.8687 ± 0.03 0.8976 ± 0.02 0.9393 ± 0.00 0.6679 ± 0.03 0.8336 ± 0.01 0.1593 ± 0.02

100:75 0.15 ± 0.00 0.001 ± 0.00 1.52 ± 0.04 0.25 ± 0.00 0.45 ± 0.00 0.004 ± 0.00 0.21 ± 0.00
0.8581 ± 0.05 0.8597 ± 0.06 0.8027 ± 0.01 0.8040 ± 0.00 0.8084 ± 0.01 0.8590 ± 0.01 0.1562 ± 0.01

100:100 0.22 ± 0.00 0.002 ± 0.03 2.14 ± 0.01 0.58 ± 0.02 0.54 ± 0.02 0.003 ± 0.01 0.03 ± 0.00
0.9122 ± 0.04 0.9159 ± 0.13 0.9565 ± 0.02 0.9742 ± 0.00 0.8761 ± 0.00 0.9147 ± 0.00 0.1029 ± 0.01
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